Matière active en biologie et en matière molle.

Organisateurs : Julien Tailleur, Vincent Démery

Proposé par la division Physique du Vivant

Ces dernières années, une communauté de physiciens et de "matière mollistes "s'est rassemblée pour l'étude de systèmes hors-équilibre qui vont des systèmes granulaires, aux bactéries en suspension, des mouvements collectifs d'oiseaux ou de bancs de poissons, à la contraction du cytosquelette des cellules ou aux fluctuations des globules rouges. Une nouvelle physique hors-équilibre émerge dont les retombées intéressent des physiciens de différents domaines. A nouveau, ce colloque est un colloque d'interface.

Programme :

- **8h30 :** Olivier Dauchot (ESPCI Paris): *Model Experiments of Active Matter : at the interface between living organisms and theoretical models*
- **9h00:** Benjamin Chollet (L2C Montpellier): *Brownian and active motions of partially wetted colloids*
- **9h15:** Antoine Bérut (IUSTI Marseille): *Gravisensing in plant cells is controlled by an active granular material*
- **9h30:** Agnese Curatolo (LMSC Paris): *Cooperative pattern formation in multi-species bacterial colonies*
- **9h45:** Adama Creppy (FAST Orsay): *Dispersion des bactéries dans un milieu poreux*
- **10h00:** Cécile Appert-Rolland (LPT Orsay): *Expériences et modélisation des mouvements de piétons*
- **10h15:** Alexandre Nicolas (LPTMS Orsay): *Influence des comportements sur la dynamique d'évacuation d'une foule à travers une porte étroite*
Model Experiments of Active Matter: at the interface between living organisms and theoretical models

Olivier Dauchot

Laboratoire Gulliver, UMR 7083 CNRS, ESPCI Paris, 10 rue Vauquelin, 75005 Paris France

The ubiquity of collective motions observed at all scales, ranging from the cooperative action of molecular motors to the behavior of large animal or human groups, has driven a surge of scientific activity. Within physics, important theoretical progress was achieved by studying microscopic point-particles models and their continuous descriptions. Among the landmark results is the possibility of a true long-range polar ordered collective motion as well as of a Motility Induced Phase Separation (MIPS).

The robustness of these observations against the numerous factors integrated out in the above effective models is a matter of crucial importance towards a reliable description of living systems. The latter however often integrate too many source of complexity at once to allow for an immediate comparison.

This is where human-designed model experimental systems have a key role to play. Janus colloids, swimming droplets or walking grains are amazing experimental realization of self propelled particles. They are far more simple than their biological inspiration, and already contain important realistic factors, such as hydrodynamics effects and pairwise force interactions, which, at least in principle, can be controlled.

In the present talk, I will first briefly illustrate the above approach on the case of rolling colloids. While this systems exhibit a remarkable transition to collective motion at very large scale; it also has a number of distinct features, which can only be explained by including the specificity of the hydrodynamics interaction. I will then turn to the case of walking grains. In that case, I will discuss (i) how and why collective motion emerge in a system of polar disks, for which no alignment is a priori imposed at the microscopic level and (ii) the decoupling of structure and dynamics observed in dense phases, for which little is known theoretically.
Brownian and active motions of partially wetted colloids

B. Chollet, A. *Stocco*, M. *Nobili*

1 Laboratoire Charles Coulomb, UMR 5221 CNRS-UM, Université de Montpellier, Campus Triolet, 34095 Montpellier, France

The dynamics of colloidal particles trapped at a liquid-gas interface is of fundamental importance in various phenomenon as biofilms formation, emulsification, micro-rheology or water purification.

A previous study of the translational Brownian motion of spherical particles and the rotational diffusion of spheroids trapped at an interface has shown that against all hydrodynamics models the diffusion is much slower than expected. The slowing down of the dynamics of particles at an interface may derive from the contact line fluctuations

We, now, use fluorescent Janus colloids to investigate both the translational and the rotational diffusions of spherical particles trapped at the air water interface. The rotational diffusion slowing down can thus be confirmed for spherical colloids, and the effect of the gelation of the diffusive motions on self-propelled Janus colloids can be investigated.

Figure 1: Side view of an ideal Janus colloid attached onto a gas-liquid interface with a contact angle α

Gravisensing in plant cells is controlled by an active granular material

Bérut A.¹, Chauvet H.², Moulia B.², Legué V.², Pouliquen O.¹, Forterre Y.¹

1 Aix Marseille Univ, CNRS, IUSTI, Marseille, France
2 Integrative Physics and Physiology of Trees (PIAF), INRA, Univ. Clermont-Auvergne, 63000 Clermont-Ferrand, France

Plants are able to sense gravity, so that the roots grow downward and the shoots upward. This gravitropism has been widely studied by biologists¹, and the commonly accepted hypothesis states that the gravity detection is mediated by the movement of starch-accumulating amyloplasts (statoliths), that sediment toward gravity in gravity sensing cells (statocytes), see figure 1a.

Figure 1: microscope pictures (x40) of wheat coleoptile cells containing statoliths (a) and of biomimetic PDMS microsystem containing silica particles with mean radius 2.2 µm (b). Vector g indicates the direction of gravity.

By performing microscopic observations of statocytes in wheat coleoptiles cuts, we have shown that a pile of statoliths flows easily, even in response to small inclination angles, contrary to what is expected for a classical granular material. This flowability ensures a high sensitivity for gravity detection, and might be explained by the agitation that statoliths undergo in plant cells. To identify the origin of the observed agitation, we have used a “biomimetic” microfluidic chambers filled with silica micro-particles of same dimension than statoliths in plant cells, but only submitted to thermal agitation (see figure 1b). The direct comparison of avalanche dynamics in the biological and physical systems suggests that the high flowability of statoliths cannot be explained by thermal motion, but is rather due to biological activity in plant cells such as cytoskeleton activity. This observation is also supported by the difference between single trajectories of statoliths and silica particles at the top of a pile at rest: the amplitude of statoliths motion in wheat cell exceed by a factor ~10 those of an inert particle of the same weight. Therefore gravisensing in plant cells relies on an active granular material.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N°647384).

Cooperative pattern formation in multi-species bacterial colonies

A. Curatolo* 1, Y. Zhao* 1, N. Zhou* 2,3,4, A. Daerr 1, J. Huang 2,3,4, J. Tailleur 1

1 Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
2 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong, PR China
3 Shenzen Institute of Research and Innovation, University of Hong Kong, Shenzen 518057, PR China
4 The Centre for Synthetic Biology Engineering Research, Shenzen Institutes od Advanced Technology, Shenzen 518055, PR China
*These authors contributed equally

The ability to form patterns is a feature shared by a large variety of systems: from hydrodynamics (e.g. thermal convection) to biological processes (e.g. morphogenesis), the emergence of repeated ordered structures can have very complicated and different origins. Sometimes, however, simple and general underlying principles can be found. In this talk I will present a generic mechanism by which two types of bacteria can migrate and self-organize spatially, using a mutual control of their motilities. Depending on whether each species enhances or lowers the motility of the other species, initially mixed colonies grow in a variety of patterns leading to demixing (see Fig. 1) or co-localization (see Fig. 2) of the two species.

The rich phenomenology described by our model and the robustness of the underlying pattern-formation mechanism suggests that it could be generically encountered in Nature. Moreover, it could also be used to promote the mixing or demixing of active particles in a controlled way.
Dispersion des bactéries dans un milieu poreux

A. Creppy\(^1\), H. Auradou\(^1\), C. Douarche\(^2\), E. Clément\(^3\), V. d’Angelo\(^4\)

1 Laboratoire Fluides Automatique et Systèmes Thermiques, CNRS, Univ. Paris-Sud, 23-25 rue Jean Rostand, Parc-Club Orsay Université 91405 Orsay Cedex France
2 Laboratoire de Physique du Solide, Univ. Paris-Sud France, 1 rue Nicolas Appert Bâtiment 510, 91405 Orsay Cedex - France
3 Laboratoire PMMH, CNRS, ESPCI, 10 rue Vauquelin 75005 France

La matière active a été beaucoup étudiée ces dernières décennies dans différents régimes (dilué, semi-dilué et dense). Dans les régimes denses il a été mis en évidence l’émergence de structures collectives de grande taille chez les « pusher ». Plus récemment, il a été montré que l’activité des bactéries induit un effet mesurable assez important sur la réduction de la viscosité du fluide porteur\(^1\). Cet effet est expliqué par la réorientation des bactéries sous l’effet d'un cisaillement. Ce couplage est aussi responsable de la création de gradient de concentration dans des écoulements de type poiseuille. Dans les régimes dilués, les études ont montré l’accumulation des microorganismes sur les parois par un mécanisme hydrodynamique. Les études expérimentales sur le sujet consistaient donc à mettre en écoulement les microorganismes dans des tubes à section circulaire ou rectangulaire. Par contre, on en sait peu sur l’effet de ce couplage entre leur nage et l’écoulement dans un écoulement plus complexe. Pour ce faire nous avons développé, grâce à la micro-fluidique, un canal avec des obstacles aléatoires de différentes tailles dans lequel la souche RP437 d’Escherichia coli a été mise en écoulement avec différentes vitesses. Cette expérience nous a permis de mettre évidence que l’activité des bactéries actives (motiles) favorise le piégeage entre et autour des grains ce qui n’est pas le cas pour des bactéries inactives (non motiles). Nous montrerons aussi que l’activité des bactéries leur permet un progression plus rapide dans le milieu.

A l’échelle d’un milieu poreux, nos expériences montrent donc que le couplage fluide-bactérie à un double effet : un plus long temps de résidence dans la porosité et en bonus quelques bactéries progressant plus rapidement dans le milieu.

\(^1\) Lopez et al, Turning bacteria suspensions into superfluids, PRL 2015
Expériences et modélisation des mouvements de piétons

Cécile Appert-Rolland

1 Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât.505, Campus d’Orsay, 91405 Orsay France

Il y a un besoin croissant de modélisation de foules ou de piétons, tant du point de vue de la conception de bâtiment ou équipement, ou de la gestion de foule lors de grands événements, que du point de vue de l’animation graphique (maquettes virtuelles, jeux vidéos, films...).

Figure 1 : Expériences de croisements de piétons réalisées à Rennes en 2016. Collaboration J. Pettré et William Warren. ©Inria / Photo G. Scagnelli

L’exposé présentera diverses expériences réalisées dans le but de collecter des données dans des situations particulières. Nous montrerons comment ces données ont permis de développer des modèles et d’en calibrer les paramètres. Nous considérerons des modèles microscopiques (modèles de poursuite, automates cellulaires) ou macroscopiques. Nous montrerons comment les modèles permettent d’expliquer, voire de prévoir, des structures qui se forment spontanément dans les écoulements de piétons.

Influence des comportements sur la dynamique d’évacuation d’une foule à travers une porte étroite

Alexandre NICOLAS1, Sebastián BOUZAT2, Marcelo KUPERMAN2

1 Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 100, Campus d’Orsay, 91400 Orsay France
2 Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, 8400 S.C. Bariloche, Argentine

Des effets d’obstruction peuvent se produire au passage d’ouvertures ou d’orifices étroits pour des matériaux granulaires tout comme pour des foule de piétons en situation d’évacuation. Des travaux récents ont montré d’intéressantes similitudes entre ces deux types de systèmes1. Mais quel est l’effet des comportements, polis ou égoïstes, des piétons sur la dynamique d’évacuation? Pour répondre à cette question, nous avons mené des expériences contrôlées de passage de porte étroite avec des participants adoptant soit un comportement égoïste, pour une fraction c_s d’entre eux, soit un comportement poli, pour le reste. Une méthode de ré-injection des piétons nous a permis d’obtenir un régime macroscopiquement quasi-stationnaire. Nos données indiquent que, s’il est vrai qu’à mesure que c_s augmente, le flux s’accroît, la variable qui contrôle le flux et plusieurs autres propriétés moyennes de l’écoulement est en fait la densité de piétons près de l’ouverture, corrélée positivement avec le flux : le détail des comportements individuels peut, en première approche, être oublié en faveur de la densité, tant que la pression reste limitée dans la foule. Une caractérisation microscopique de l’écoulement est également proposée. Nos principaux résultats concernent la distribution des intervalles de temps entre sorties successives et le temps d’attente avant le passage de la porte, en lien avec les comportements. En particulier, un étonnant effet d’alternance entre intervalles de temps courts entre sorties et intervalles longs a été mis en évidence, même dans les évacuations les plus compétitives, et un mécanisme a été suggéré pour l’expliquer (“generalised zipper effect”) 2.

\textit{Illustration 1: Frise temporelle des passages de piétons à travers la porte dans le cas d’une foule}
